Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.750
Filtrar
1.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557764

RESUMO

This protocol describes the synthesis of Au nanoparticle seeds and the subsequent formation of Au-Sn bimetallic nanoparticles. These nanoparticles have potential applications in catalysis, optoelectronics, imaging, and drug delivery. Previously, methods for producing alloy nanoparticles have been time-consuming, require complex reaction conditions, and can have inconsistent results. The outlined protocol first describes the synthesis of approximately 13 nm Au nanoparticle seeds using the Turkevich method. The protocol next describes the reduction of Sn and its incorporation into the Au seeds to generate Au-Sn alloy nanoparticles. The optical and structural characterization of these nanoparticles is described. Optically, prominent localized surface plasmon resonances (LSPRs) are apparent using UV-visible spectroscopy. Structurally, powder X-ray diffraction (XRD) reflects all particles to be less than 20 nm and shows patterns for Au, Sn, and multiple Au-Sn intermetallic phases. Spherical morphology and size distribution are obtained from transmission electron microscopy (TEM) imaging. TEM reveals that after Sn incorporation, the nanoparticles grow to approximately 15 nm in diameter.


Assuntos
Ligas de Ouro , Nanopartículas Metálicas , Prata/química , Ouro/química , Estanho , Nanopartículas Metálicas/química , Ligas/química
2.
ACS Appl Mater Interfaces ; 16(15): 18503-18521, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570902

RESUMO

Biomaterials can induce an inflammatory response in surrounding tissues after implantation, generating and releasing reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The excessive accumulation of ROS may create a microenvironment with high levels of oxidative stress (OS), which subsequently accelerates the degradation of the passive film on the surface of titanium (Ti) alloys and affects their biological activity. The immunomodulatory role of macrophages in biomaterial osteogenesis under OS is unknown. This study aimed to explore the corrosion behavior and bone formation of Ti implants under an OS microenvironment. In this study, the corrosion resistance and osteoinduction capabilities in normal and OS conditions of the Ti-24Nb-4Zr-8Sn (wt %, Ti2448) were assessed. Electrochemical impedance spectroscopy analysis indicated that the Ti2448 alloy exhibited superior corrosion resistance on exposure to excessive ROS compared to the Ti-6Al-4V (TC4) alloy. This can be attributed to the formation of the TiO2 and Nb2O5 passive films, which mitigated the adverse effects of OS. In vitro MC3T3-E1 cell experiments revealed that the Ti2448 alloy exhibited good biocompatibility in the OS microenvironment, whereas the osteogenic differentiation level was comparable to that of the TC4 alloy. The Ti2448 alloy significantly alleviates intercellular ROS levels, inducing a higher proportion of M2 phenotypes (52.7%) under OS. Ti2448 alloy significantly promoted the expression of the anti-inflammatory cytokine, interleukin 10 (IL-10), and osteoblast-related cytokines, bone morphogenetic protein 2 (BMP-2), which relatively increased by 26.9 and 31.4%, respectively, compared to TC4 alloy. The Ti2448 alloy provides a favorable osteoimmune environment and significantly promotes the proliferation and differentiation of osteoblasts in vitro compared to the TC4 alloy. Ultimately, the Ti2448 alloy demonstrated excellent corrosion resistance and immunomodulatory properties in an OS microenvironment, providing valuable insights into potential clinical applications as implants to repair bone tissue defects.


Assuntos
Osteogênese , Titânio , Corrosão , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Materiais Biocompatíveis , Ligas/química , Estresse Oxidativo , Propriedades de Superfície , Teste de Materiais
3.
J Mech Behav Biomed Mater ; 154: 106510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593720

RESUMO

Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys. In the present work, suitable literature data along SCC of Mg alloys has been analyzed to enable the development of a reliable SCC model for MgGd binary alloys. Pearson correlation coefficient and linear fitting are utilized to describe the contribution of selected parameters to corrosion and mechanical properties. Based on our data analysis, a parameter ranking is obtained, providing information on the SCC impact with regard to ultimate tensile strength (UTS) and fracture elongation of respective materials. According to the analyzed data, SCC susceptibility can be grouped and mapped onto Ashby type diagrams for UTS and elongation of respective base materials tested in air and in corrosive media. The analysis reveals the effect of secondary phase content as a crucial materials descriptor for our analyzed materials and enables better understanding towards SCC model development for Mg-5Gd alloy based implant.


Assuntos
Ligas , Cáusticos , Teste de Materiais , Ligas/química , Corrosão , Análise de Dados , Materiais Biocompatíveis/química
4.
Sci Rep ; 14(1): 6765, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514805

RESUMO

Surfaces on transit vehicles are frequently touched and could potentially act as reservoirs for micro-organism transmission. Regular cleaning and disinfection to minimize the spread of micro-organisms is operationally challenging due to the need to keep vehicles in circulation. The application of copper (Cu) alloys to high- touch surfaces could help reduce the risk of cross-contamination, however, little is known about the durability and efficacy of engineered copper surfaces after prolonged use. Three Cu products (decal, thermal fabrication, and alloy covers) were assessed over a 12-month period. These Cu products were randomly installed on 110 stanchions on three buses and four train (SkyTrain) cars in Vancouver and three buses, two subway cars, and two streetcars in Toronto with mirrored control surfaces directly opposite. Bacterial counts (Colony forming units, CFU) and ATP bioluminescence (ATPB) were measured every two months after peak morning routes. Durability of the Cu products were assessed monthly through visual inspection and colorimetry assays or by ex-situ microscopy. Cu products on stanchions reduced the mean colony forming units (CFU) of all vehicles by 42.7% in the mean CFU (0.573 (CI 95% 0.453-0.726), p-value < 0.001) compared to control surfaces. The three Cu products exhibited an overall 87.1% reduction in the mean ATPB readings (0.129 (CI 95% 0.059-0.285, p-value < 0.001) compared to controls. Surface Cu concentration for all three products was consistent throughout the 12-month period. Electron microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS) cross-sectional analysis showed no change in thickness or dealloying of Cu products, however SEM top-down analysis revealed substantial carbon accumulation on all surfaces. Cu products installed on transit vehicles maintained antimicrobial efficacy and durability after 12 months of use.


Assuntos
Anti-Infecciosos , Cobre , Cobre/química , Estudos Transversais , Desinfecção/métodos , Ligas/química
5.
J Mater Sci Mater Med ; 35(1): 18, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526654

RESUMO

Surface modification of titanium and its alloys has been seriously considered by researchers to improve their biological behaviors, in the past few decades. In present research, hydroxyapatite (HA) based composite coatings with different concentrations of 0, 2, 4, and 6 wt% of silver (Ag) nanoparticles were electrophoretically deposited (EPD) on anodized and non-anodized Ti6Al4V, using a direct current at a voltage of 30 V for 10 min at room temperature. The specimens were then characterized by means of X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The cell adhesion images and cell viability results showed that HA-Ag composite coatings significantly promoted the biocompatibility of samples compared with the non-anodized and anodized Ti6Al4V. The viabilities of Mg-63 cells on HA-4%Ag coating and bi-layer coating (HA-4%Ag on anodized specimen) were approximately 91% and they were considered as the best coatings in term of biocompatibility. On the other hand, the antibacterial assessments demonstrated that HA-6%Ag coating had the best antibacterial performance compared with other samples. Furthermore, Tafel polarization curves indicated that corrosion resistance of the bi-layer coating was higher than those of the other specimens. The polarization resistance of this coating was about 7 times more than that of theTi6Al4V alloy.


Assuntos
Durapatita , Nanopartículas Metálicas , Durapatita/química , Titânio/química , Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Materiais Revestidos Biocompatíveis/química , Corrosão , Difração de Raios X , Ligas/química , Antibacterianos
6.
J Mech Behav Biomed Mater ; 153: 106477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428204

RESUMO

Lattice structures have found significant applications in the biomedical field due to their interesting combination of mechanical and biological properties. Among these, functionally graded structures sparked interest because of their potential of varying their mechanical properties throughout the volume, allowing the design of biomedical devices able to match the characteristics of a graded structure like human bone. The aim of this works is the study of the effect of the density grading on the mechanical response and the failure mechanisms of a novel functionally graded lattice structure, namely Triply Arranged Octagonal Rings (TAOR). The mechanical behaviour was compared with the same lattice structures having constant density ratio. Electron Beam Melting technology was used to manufacture titanium alloy specimens with global relative densities from 10% to 30%. Functionally graded structures were obtained by increasing the relative density along the specimen, by individually designing the lattice's layers. Scanning electron and a digital microscopy were used to evaluate the dimensional mismatch between actual and designed structures. Compressive tests were carried out to obtain the mechanical properties and to evaluate the collapse modes of the structures in relation to their average relative density and lattice grading. Open-source Digital Image Correlation algorithm was applied to evaluate the deformation behaviour of the structures and to calculate their elastic moduli. The results showed that uniform density structures provide higher mechanical properties than functionally graded ones. The Digital Image Correlation results showed the possibility of effectively designing the different layers of functionally graded structures selecting desired local mechanical properties to mimic the different characteristics of cortical and cancellous bone.


Assuntos
Osso Esponjoso , Titânio , Humanos , Porosidade , Módulo de Elasticidade , Titânio/química , Ligas/química
7.
ACS Appl Bio Mater ; 7(3): 1735-1747, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38411089

RESUMO

Resorbable Mg and Mg alloys have gained significant interest as promising biomedical materials. However, corrosion of these alloys can lead to premature reduction in their mechanical properties, and therefore their corrosion rate needs to be controlled. The aim of this study is to select an appropriate environment where the effects of coatings on the corrosion rate of the underlying Mg alloy can be discerned and measured in a relatively short time period. The corrosion resistance of uncoated AZ31 alloy in different solutions [Hank's Balanced Salt Solution, 1× phosphate buffered solution (PBS), 4× PBS, 0.9%, 3.5%, and 5 M sodium chloride (NaCl)] was determined by measuring the weight loss over a 2 week period. Upon exposure to physiological solutions, the uncoated AZ31 alloys exhibited a variable weight increase of 0.4 ± 0.4%. 3.5% and 5 M NaCl solutions led to 0.27 and 9.7 mm/year corrosion rates, respectively, where the compositions of corrosion products from AZ31 in all saline solutions were similar. However, the corrosion of the AZ31 alloy when coated by electrochemical oxidation with two phosphate coatings, one containing fluorine (PF) and another containing both fluorine and silica (PFS), showed 0.3 and 0.25 mm/year corrosion rates, respectively. This is more than 30 times lower than that of the uncoated alloy (7.8 mm/year), making them promising candidates for corrosion protection in severe corrosive environments. Cross-sections of the samples showed that the coatings protected the alloy from corrosion by preventing access of saline to the alloy surface, and this was further reinforced by corrosion products from both the alloy and the coatings forming an additional barrier. The information in this paper provides a methodology for evaluating the effects of coatings on the rate of corrosion of magnesium alloys.


Assuntos
Cáusticos , Materiais Revestidos Biocompatíveis , Materiais Revestidos Biocompatíveis/química , Corrosão , Cloreto de Sódio , Flúor , Ligas/química , Fosfatos , Solução Salina
8.
Colloids Surf B Biointerfaces ; 236: 113808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422669

RESUMO

In the cardiovascular field, coating containing copper used to catalyze NO (nitric oxide) production on non-degradable metal surfaces have shown unparalleled expected performance, but there are few studies on biodegradable metal surfaces. Magnesium-based biodegradable metals have been applied in cardiovascular field in large-scale because of their excellent properties. In this study, the coating of copper loaded in silk fibroin is fabricated on biodegradable ZE21B alloy. Importantly, the different content of copper is set to investigate the effects of on the degradation performance and cell behavior of magnesium alloy. Through electrochemical and immersion experiments, it is found that high content of copper will accelerate the corrosion of magnesium alloy. The reason is the spontaneous micro-batteries between copper and magnesium with the different standard electrode potentials, that is, the galvanic corrosion accelerates the corrosion of magnesium alloy. Moreover, the coating formed through silk fibroin by the right amount copper not only have a protective effect on the ZE21B alloy substrate, but also promotes the adhesion and proliferation of endothelial cells in blood vessel micro-environment. The production of NO catalyzed by copper ions makes this trend more significant, and inhibits the excessive proliferation of smooth muscle cells. These findings can provide guidance for the amount of copper in the coating on the surface of biodegradable magnesium alloy used for cardiovascular stent purpose.


Assuntos
Fibroínas , Fibroínas/farmacologia , Fibroínas/química , Cobre/farmacologia , Ligas/farmacologia , Ligas/química , Magnésio/farmacologia , Magnésio/química , Células Endoteliais , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Corrosão
9.
Acta Biomater ; 178: 340-351, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395100

RESUMO

Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue behavior of an extrusion-based AM porous Fe35Mn alloy under cyclic loading in air and in the revised simulated body fluid (r-SBF), including the fatigue crack morphology and distribution in the porous structure. We hypothesized that the fatigue behavior of the architected AM Fe35Mn alloy would be strongly affected by the simultaneous biodegradation process. We defined the endurance limit as the maximum stress at which the scaffolds could undergo 3 million loading cycles without failure. The endurance limit of the scaffolds was determined to be 90 % of their yield strength in air, but only 60 % in r-SBF. No notable crack formation in the specimens tested in air was observed even after loading up to 90 % of their yield strength. As for the specimens tested in r-SBF, however, cracks formed in the specimens subjected to loads exceeding 60 % of their yield strength appeared to initiate on the periphery and propagate toward the internal struts. Altogether, the results show that the extrusion-based AM porous Fe35Mn alloy is capable of tolerating up to 60 % of its yield strength for up to 3 million cycles, which corresponds to 1.5 years of use of load-bearing implants subjected to repetitive gait cycles. The fatigue performance of the alloy thus further enhances its potential for trabecular bone substitution subjected to cyclic compressive loading. STATEMENT OF SIGNIFICANCE: Fatigue behavior of extrusion-based AM porous Fe35Mn alloy scaffolds in air and revised simulated body fluid was studied. The Fe35Mn alloy scaffolds endured 90 % of their yield strength for up to 3 × 106 loading cycles in air. Moreover, the scaffolds tolerated 3 × 106 loading cycles at 60 % of their yield strength in revised simulated body fluid. The Fe35Mn alloy scaffolds exhibited a capacity of withstanding 1.5-year physiological loading when used as bone implants.


Assuntos
Ferro , Manganês , Ferro/química , Porosidade , Estresse Mecânico , Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais
10.
Bioelectrochemistry ; 157: 108639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199185

RESUMO

Recently, high-entropy alloys have superior physicochemical properties as compared to conventional alloys for their glamorous "cocktail effect". Nevertheless, they are scarcely applied to electrochemical immunoassays until now. Herein, uniform PtRhMoCoFe high-entropy alloyed nanodendrites (HEANDs) were synthesized by a wet-chemical co-reduction method, where glucose and oleylamine behaved as the co-reducing agents. Then, a series of characterizations were conducted to illustrate the synergistic effect among multiple metals and fascinating structural characteristics of PtRhMoCoFe HEANDs. The obtained high-entropy alloy was adopted to build a electrochemical label-free biosensor for ultrasensitive bioassay of biomarker cTnI. In the optimized analytical system, the resultant sensor exhibited a dynamic linear range of 0.0001-200 ng mL-1 and a low detection limit of 0.0095 pg mL-1 (S/N = 3). Eventually, this sensing platform was further explored in serum samples with satisfied recovery (102.0 %). This research renders some constructive insights for synthesis of high-entropy alloys and their expanded applications in bioassays and bio-devices.


Assuntos
Ligas , Técnicas Biossensoriais , Entropia , Ligas/química , Biomarcadores , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
11.
Acta Biomater ; 177: 538-559, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253302

RESUMO

Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.% gadolinium (Zn-5Gd) samples were prepared by casting and respectively combining with hot rolling and hot extrusion for bone-implant applications. Their microstructure evolution, mechanical properties, corrosion behavior, cytotoxicity, antibacterial ability, and in vitro and in vivo osteogenesis were systematically evaluated. The HR and HE Zn-5Gd exhibited significantly improved mechanical properties compared with those of their pure Zn counterparts and the HR Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%, all of which are greater than the mechanical properties required for bone-implant materials. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution and the HE Zn-5Gd had the lowest corrosion rate of 155 µm/y measured by electrochemical corrosion and degradation rate of 26.9 µm/y measured by immersion testing. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, high antibacterial effects against S. aureus, and better in vitro osteogenic activity than their pure Zn counterparts. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti. STATEMENT OF SIGNIFICANCE: This work reports the mechanical properties, corrosion behaviors, cytocompatibility, antibacterial ability, in vitro and in vivo osteogenesis of biodegradable Zn-Gd alloy for bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks' solution. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, good antibacterial effects against S. aureus, and better in vitro osteogenic activity. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti.


Assuntos
Ligas , Osteogênese , Teste de Materiais , Ligas/farmacologia , Ligas/química , Zinco/farmacologia , Zinco/química , Staphylococcus aureus , Antibacterianos/farmacologia , Implantes Absorvíveis , Corrosão , Materiais Biocompatíveis/química
12.
Biomed Mater ; 19(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38215484

RESUMO

Magnesium ions, MgO nanoparticles and thin films, magnesium alloys and cerium compounds are materials intensively studied due to their corrosion protection, antibacterial and pharmacological properties. In this work, we have designed, prepared and investigated, novel thin films of MgO doped with cerium, deposited on Mg alloy (AZ31) for temporary implants, in order to enhance their life time. More precisely, we report on microstructure and corrosion behavior of MgO pure and doped with 0.1 at % Ce films, fabricated by sol-gel route coupled with spin-coating technique, on AZ31 alloy substrate. A modified sol-gel method that start from magnesium acetylacetonate, cerium nitrate and 2-methoxyethanol (as a stabilizer for the sol) was been used successfully for cerium doped MgO sol precursor preparation. The structure and morphology of the surface of the coatings, before and after immersion for 7-30 d in Hank's solution at 37 °C, were characterized by x-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscope, x-ray photoelectron spectroscopy and Fourier infrared transmittance spectrum (FT-IR). A comparison between the corrosion protection of undoped MgO and MgO doped with 0.1 at % Ce coatings on the AZ31 alloy substrate is performed by electrochemical tests and immersion tests using open circuit potential and electrochemical impedance spectroscopy in Hank's solution, at 37 °C. The electrochemical results showed that the protection of the AZ31 alloy substrate against corrosion was better with the doped with 0.1 at % Ce MgO film deposited than with pure MgO coting. The investigations of the films after immersion in Hank's solution, at 37 °C, for 7, 21 and 30 d indicated that the grown layer on the film is bone like apatite that suggests a good bioactivity of 0.1 at % Ce-doped MgO coating. Our work demonstrates that the performance corrosion protection of the biodegradable magnesium alloys used for orthopedic applications, in simulated physiological environments (Hank and Ringer) can be enhanced through coating with Ce3+doped MgO sol-gel thin film.


Assuntos
Cério , Magnésio , Magnésio/química , Óxido de Magnésio , Materiais Revestidos Biocompatíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ligas/química , Corrosão
13.
ACS Appl Mater Interfaces ; 16(3): 3171-3186, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205810

RESUMO

Biomaterial scaffolds, including bone substitutes, have evolved from being primarily a biologically passive structural element to one in which material properties such as surface topography and chemistry actively direct bone regeneration by influencing stem cells and the immune microenvironment. Ti-6Al-4V(Ti6Al4V) implants, with a significantly higher elastic modulus than human bone, may lead to stress shielding, necessitating improved stability at the bone-titanium alloy implant interface. Ti-24Nb-4Zr-8Sn (Ti2448), a low elastic modulus ß-type titanium alloy devoid of potentially toxic elements, was utilized in this study. We employed 3D printing technology to fabricate a porous scaffold structure to further decrease the structural stiffness of the implant to approximate that of cancellous bone. Microarc oxidation (MAO) surface modification technology is then employed to create a microporous structure and a hydrophilic oxide ceramic layer on the surface and interior of the scaffold. In vitro studies demonstrated that MAO treatment enhances the proliferation, adhesion, and osteogenesis capabilities on the scaffold surface. The chemical composition of the MAO-Ti2448 oxide layer is found to enhance the transcription and expression of osteogenic genes in bone mesenchymal stem cells (BMSCs), potentially related to the enrichment of Nb2O5 and SnO2 in the oxide layer. The MAO-Ti2448 scaffold, with its synergistic surface activity and low stiffness, significantly activates the anti-inflammatory macrophage phenotype, creating an immune microenvironment that promotes the osteogenic differentiation of BMSCs. In vivo experiments in a rabbit model demonstrated a significant improvement in the quantity and quality of the newly formed bone trabeculae within the scaffold under the contact osteogenesis pattern with a matched elastic modulus. These trabeculae exhibit robust connections to the external structure of the scaffold, accelerating the formation of an interlocking structure between the bone and implant and providing higher implantation stability. These findings suggest that the MAO-Ti2448 scaffold has significant potential as a bone defect repair material by regulating osteoimmunomodulation and osteogenesis to enhance osseointegration. This study demonstrates an optional strategy that combines the mechanism of reducing the elastic modulus with surface modification treatment, thereby extending the application scope of ß-type titanium alloy.


Assuntos
Osseointegração , Osteogênese , Animais , Humanos , Coelhos , Módulo de Elasticidade , Titânio/farmacologia , Ligas/farmacologia , Ligas/química , Óxidos , Impressão Tridimensional , Propriedades de Superfície
14.
Biomed Mater ; 19(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38211318

RESUMO

Magnesium (Mg) alloys have attracted attention as biodegradable metals, but the details of their corrosion behavior under biological environment have not been elucidated. Previous studies have suggested that diffusion through blood flow may influence Mg corrosion. Therefore, to understand the degradation behaviors of Mg, we analyzed insoluble salt precipitation associated with Mg corrosion in model tissue with different diffusion rates. A pure Mg specimen was immersed into a model tissue prepared with cell culture medium supplemented by a thickener at a different concentration (0.2%-0.5%) to form the gel. Micro-focus x-ray computed tomography of the gel was performed to observe gas cavity formation around the specimen. The insoluble salt layer formed on the specimen surface were analyzed by scanning electron microscopy with energy-dispersive x-ray spectroscopy, and Raman spectroscopy. As results, gas cavity formation was observed for all specimens. At day 7, the gas cavity volume was the highest at 0.5% thickener gel followed by 0.3% thickener gel. The insoluble salts were classified into three types based on their morphology; plate-like, granular-like, and crater-like salts. The crater-like salts were observed to cover 16.8 ± 3.9% of the specimen surface immersed in the 0.5% thickener gel, at the specimen area contacted to the gas cavity. The crater-like salts were composed by Mg hydroxide and carbonate from the deepest to the top layer. In plate-like or granular-like salts, Mg carbonate was formed in the deepest layer, but phosphates and carbonates, mainly containing calcium not Mg, were formed on the surface layer. In conclusion, the increase in the thickener concentration increased the gas cavity volume contacting to the specimen surface, resulting in the increase in precipitation of Mg hydroxide and carbonate, composing crater-like salts. Mg hydroxide and carbonate precipitation suggests the local increase in OH-concentration, which may be attributed to the decrease in diffusion rate.


Assuntos
Magnésio , Sais , Corrosão , Magnésio/química , Carbonatos , Hidróxidos , Ligas/química
15.
Sci Rep ; 14(1): 2425, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287092

RESUMO

This work aimed to improve the rapid biodegradation, poor wear resistance properties, and lack of bioactivity of metallic biomaterials to be used in orthopedic applications. In this context, zinc-magnesium (Zn-Mg) alloy with successive contents of calcium silicate (CaSiO3) and silicon nitride (Si3N4) was prepared using powder metallurgy technique. After sintering, their phase composition and microstructure were investigated using the X-ray diffraction technique and scanning electron microscopy (SEM), respectively. Furthermore, their degradation behavior and ability to form hydroxyapatite (HA) layer on the sample surface after immersion in simulated body fluid (SBF) were monitored using weight loss measurements, inductively coupled plasma-atomic emission spectroscopy, and SEM. Moreover, their tribo-mechanical properties were measured. The results obtained showed that the successive contents of CaSiO3 were responsible for improving the bioactivity behavior as indicated by a good formation of the HA layer on the samples' surface. Additionally, ceramic materials were responsible for a continuous decrease in the released ions in the SBF solution as indicated by the ICP results. The tribology properties were significantly improved even after exposure to different loads. Based on the above results, the prepared nanocomposites are promising for use in orthopedic applications.


Assuntos
Ligas , Magnésio , Magnésio/química , Ligas/química , Zinco , Materiais Biocompatíveis/química , Durapatita/química , Suporte de Carga , Difração de Raios X , Microscopia Eletrônica de Varredura
16.
ACS Appl Bio Mater ; 7(2): 839-852, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38253353

RESUMO

Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials. In this work, the inherent antibacterial behavior of the as-cast biodegradable Fe69Mn30C1 (FeMnC) alloy against Gram-negative Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive Staphylococcus aureus is presented for the first time in comparison to the clinically applied, corrosion-resistant AISI 316L stainless steel. In the second step, 3.5 wt % Cu was added to the FeMnC reference alloy, and the microbial corrosion as well as the proliferation of the investigated bacterial strains is further strongly influenced. This leads for instance to enhanced antibacterial activity of the Cu-modified FeMnC-based alloy against the very aggressive, wild-type bacteria P. aeruginosa. For clarification of the bacterial test results, additional analyses were applied regarding the microstructure and elemental distribution as well as the initial corrosion behavior of the alloys. This was electrochemically investigated by a potentiodynamic polarization test. The initial degraded surface after immersion were analyzed by glow discharge optical emission spectrometry and transmission electron microscopy combined with energy-dispersive X-ray analysis, revealing an increase of degradation due to Cu alloying. Due to their antibacterial behavior, both investigated FeMnC-based alloys in this study are attractive as a temporary implant material.


Assuntos
Ligas , Próteses e Implantes , Ligas/química , Antibacterianos/farmacologia , Antibacterianos/química
17.
ACS Appl Mater Interfaces ; 16(5): 5627-5636, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275195

RESUMO

This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.


Assuntos
Nanoestruturas , Titânio , Teste de Materiais , Titânio/farmacologia , Titânio/química , Nanoestruturas/química , Ligas/farmacologia , Ligas/química
18.
Int J Biol Macromol ; 260(Pt 1): 129390, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218288

RESUMO

This study describes the preparation of chitosan-derivatives coatings on AZ31 Mg alloy for corrosion protection in Hank's Balanced Salt Solution (HBSS). The derivatives were prepared by reacting chitosan with natural aldehydes (vanillin, benzaldehyde and cinnamaldehyde) and the coatings were characterized by means of water contact angle, scanning electron microscopy and swelling essays. The corrosion behavior of the samples was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution essays. All derivatives present superior corrosion protection than neat chitosan and the best performance is observed for the vanillin derivative with the highest modification degree, which present hydrogen evolution rate of 0.05 mL cm-2 day-1, below the tolerance limit for biomedical application, and |Z|max in the order of 104.6 Ω cm2 even after 14 days of exposure to the corrosive solution.


Assuntos
Benzaldeídos , Quitosana , Ligas/química , Hidrogênio/química , Corrosão
19.
Adv Sci (Weinh) ; 11(13): e2307812, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243646

RESUMO

Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.


Assuntos
Ligas , Osteogênese , Implantes Absorvíveis , Ligas/química , Ligas/farmacologia , Teste de Materiais , Mitocôndrias/efeitos dos fármacos , Zinco/química , Disprósio/química , Disprósio/farmacologia , Osteogênese/efeitos dos fármacos , Sirtuínas/efeitos dos fármacos , Humanos , Fraturas Ósseas/tratamento farmacológico
20.
Sci Rep ; 14(1): 1573, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238413

RESUMO

Calcium phosphate (CaPO4) coating is one of various methods that is used to modify the topography and the chemistry of Ti dental implant surface to solve sever oral problems that result from diseases, accidents, or even caries due to its biocompatibility. In this work, anodized (Ti-bare) was coated by CaPO4 prepared from amorphous calcium phosphate nanoparticles (ACP-NPs) and confirmed the structure by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) techniques. Ti-bare was coated by prepared CaPO4 through the casting process, and the morphology of Ti/CaPO4 was characterized by scanning electron microscope (SEM) where the nano-flakes shape of CaPO4 and measured to be 60 ~ 80 nm was confirmed. The stability of Ti-bare and coated Ti/CaPO4 was studied in a simulated saliva solution using electrochemical impedance spectroscopy (EIS) and linear polarization techniques to deduce their corrosion resistance. Furthermore, three essential oils (EO), Cumin, Thyme, and Coriander, were used to stimulate their synergistic effect with the CaPO4 coat to enhance the corrosion resistance of Ti implant in an oral environment. The fitting EIS parameters based on Rs [RctC]W circuit proved that the charge transfer resistance (Rct) of Ti/CaPO4 increased by 264.4, 88.2, and 437.5% for Cumin, Thyme, and Coriander, respectively, at 2% concentration.


Assuntos
Implantes Dentários , Titânio , Corrosão , Teste de Materiais , Titânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Fosfatos de Cálcio/química , Propriedades de Superfície , Ligas/química , Materiais Revestidos Biocompatíveis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...